38 research outputs found

    Micromechanical finite element modelling of thermo-mechanical fatigue for P91 steels

    Get PDF
    In this paper, the cyclic plasticity and fatigue crack initiation behaviour of a tempered martensite ferritic steel under thermo-mechanical fatigue conditions is examined by means of micromechanical finite element modelling. The crystal plasticity-based model explicitly reflects the microstructure of the material, measured by electronic backscatter diffraction. The predicted cyclic thermo-mechanical response agrees well with experiments under both in-phase and out-of-phase conditions. A thermo-mechanical fatigue indicator parameter, with stress triaxiality and temperature taken into account, is developed to predict fatigue crack initiation. In the fatigue crack initiation simulation, the out-of-phase thermo-mechanical response is identified to be more dangerous than in-phase response, which is consistent with experimental failure data. It is shown that the behaviour of thermo-mechanical fatigue can be effectively predicted at the microstructural level and this can lead to a more accurate assessment procedure for power plant components

    Microbes in beach sands : integrating environment, ecology and public health

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Reviews in Environmental Science and Bio/Technology 13 (2014): 329-368, doi:10.1007/s11157-014-9340-8.Beach sand is a habitat that supports many microbes, including viruses, bacteria, fungi and protozoa (micropsammon). The apparently inhospitable conditions of beach sand environments belie the thriving communities found there. Physical factors, such as water availability and protection from insolation; biological factors, such as competition, predation, and biofilm formation; and nutrient availability all contribute to the characteristics of the micropsammon. Sand microbial communities include autochthonous species/phylotypes indigenous to the environment. Allochthonous microbes, including fecal indicator bacteria (FIB) and waterborne pathogens, are deposited via waves, runoff, air, or animals. The fate of these microbes ranges from death, to transient persistence and/or replication, to establishment of thriving populations (naturalization) and integration in the autochthonous community. Transport of the micropsammon within the habitat occurs both horizontally across the beach, and vertically from the sand surface and ground water table, as well as at various scales including interstitial flow within sand pores, sediment transport for particle-associated microbes, and the large-scale processes of wave action and terrestrial runoff. The concept of beach sand as a microbial habitat and reservoir of FIB and pathogens has begun to influence our thinking about human health effects associated with sand exposure and recreational water use. A variety of pathogens have been reported from beach sands, and recent epidemiology studies have found some evidence of health risks associated with sand exposure. Persistent or replicating populations of FIB and enteric pathogens have consequences for watershed/beach management strategies and regulatory standards for safe beaches. This review summarizes our understanding of the community structure, ecology, fate, transport, and public health implications of microbes in beach sand. It concludes with recommendations for future work in this vastly under-studied area.2015-05-0

    Experimental and modelling study of fatigue crack initiation in an aluminium beam with a hole under 4-point bending

    Get PDF
    Slip band formation and crack initiation during cyclic fatigue were investigated by in-situ experiments and non-local CPFEM simulations systematically. Experimental techniques including EBSD, digital image correlation (DIC) and SEM have been used to obtain consistent grain orientations, local strains, as well as the locations where slip bands and micro-cracks form on the sample surface. The realistic microstructure based on the EBSD map has been generated and used for finite element modelling. An advanced non-local crystal plasticity model, which considers the isotropic and kinematic hardening of the plastic strain gradient, has been adopted. The simulation results match well the corresponding experimental results. It was found that total strain and averaged slip on all slip systems, combined with accumulated slip on specific slip planes help predict the location and orientation of slip bands and micro-crack initiation correctly. Furthermore, a fatigue indicating parameter based on competition between maximum slip and the total slip has been proposed to reproduce the experimental observations

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd

    Ultrasonic 3D Rangefinder on a Chip

    No full text
    Optical 3D imagers for gesture recognition, such as Microsoft Kinect, suffer from large size and high power consumption. Their performance depends on ambient illumination and they generally cannot operate in sunlight. These factors have prevented widespread adoption of gesture interfaces in energy- and volume-limited environments such as tablets and smartphones. Gesture recognition using sound is an attractive candidate to overcome these difficulties because of the potential for chip-scale solution size, low power consumption, and ambient light insensitivity.Our research focuses on building a 3D ultrasonic rangefinder system using batch-fabricated micromachined aluminum nitride (AlN) ultrasonic transducer arrays and custom CMOS electronics. The system uses pulse-echo time-of-flight to localize targets from their echoes. We use millimeter--wave ultrasound, which enables compact ultrasonic arrays which can measure range and direction to a target. The relatively slow speed of sound allows the use of low--speed, low-power readout electronics.In this dissertation, we will present the design methodology for a prototype ultrasonic rangefinder system. We will show how the choice of basic system specifications affects the mechanical transducer design and the interface circuit design. We will present a physics-based model of an ultrasound transducer which accurately predicts device operation. We will present measured results from an ultrasonic 3D gesture recognition system which uses an array of AlN MEMS transducers and custom readout electronics to localize targets over a ±45° field of view up to 1m away. The 0.18μm CMOS readout ASIC comprises 10 independent channels with separate high voltage transmitters, readout amplifiers, and ADCs. Power dissipation is 400μW at 30fps, and scales to 5μW/ch at 10fps

    Text Mining Resources for the Life Sciences

    No full text
    Text mining is a powerful technology for quickly distilling key information from vast quantities of biomedical literature. However, to harness this power the researcher must be well versed in the availability, suitability, adaptability, interoperability and comparative accuracy of current text mining resources. In this survey, we give an overview of the text mining resources that exist in the life sciences to help researchers, especially those employed in biocuration, to engage with text mining in their own work. We categorize the various resources under three sections: Content Discovery looks at where and how to find biomedical publications for text mining; Knowledge Encoding describes the formats used to represent the different levels of information associated with content that enable text mining, including those formats used to carry such information between processes; Tools and Services gives an overview of workflow management systems that can be used to rapidly configure and compare domain- and task-specific processes, via access to a wide range of pre-built tools. We also provide links to relevant repositories in each section to enable the reader to find resources relevant to their own area of interest. Throughout this work we give a special focus to resources that are interoperable—those that have the crucial ability to share information, enabling smooth integration and reusability
    corecore